Education
Degree |
Date |
Affiliation |
Major |
PhD |
2004-2009 |
Shandong University |
Microbiology |
Guest PhD |
2007-2008 |
Technical University of Denmark, Denmark |
Microbiology |
Bachelor |
2000-2004 |
Shandong Agriculture University |
Biotechnology |
Research Experience
Date |
Affiliation |
Position |
2012- present |
Shandong University |
Professor |
2010-2012 |
Chalmers University of Technology, Sweden |
Postdoc |
2009-2010 |
Green Biologics Ltd, UK |
Technical Coordinator |
Research Interests
Synthetic Biology and metabolic engineering
1.Synthetic Biology tool development, including biosensor construction and application, genetic circuit development, expanding the genome engineering tool and the metabolic evolution technology
2. Metabolic engineering: Pathway engineering of micro-organisms towards the efficient production of useful bulk chemicals and value added compounds;
Research Projects
1. 2018-2021, The construction of malonyl-CoA sensor in Saccharomyces cerevisiae and the design of the malonyl-CoA regulated in vivo continuous genome evolution, National Natural Science Foundationof China
2. 2017-2018, The research to improve the secretion and display efficiency of cellulosome components inSaccharomyces cerevisiae
3. 2015-2018, The module metabolic engineering of key precursor acetyl-CoA, its derived products synthesis and cofactor perturbation in Saccharomyces cerevisiae, National Natural Science Foundationof China
4. 2014-2016, The study of protein secretion pathway engineering on the assembly of cellulosome in Saccharomyces cerevisiae, National Natural Science Foundation of China
5. 2016-2017, The development of yeast platform for monoterpene geraniol production, the Key R & D Program of Shandong Province
6. 2013-2015, The functional genomic analysis of high efficient cofactor independent xylose metabolic strains, Promotive research fund for excellent young, Middle-aged scientists of Shandong Province.
Representative Publications
1. Cui Z, Jiang X, Zheng H, Qi Q*,Hou J*. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization inYarrowia lipolytica. Biotechnol Bioeng. 2019 Feb;116(2):354-363. doi: 10.1002/bit.26863.
2. Chen X, Yang X, Shen Y,Hou J*, Bao X. Increasing Malonyl-CoA Derived Product through Controlling the Transcription Regulators of Phospholipid Synthesis inSaccharomyces cerevisiae, ACS Synth Biol. 2017 May 19;6(5):905-912.
3. Hou J,Jiao C, Peng B, Shen Y, Bao X. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones inSaccharomyces cerevisiae, Metab Eng. 2016 Nov;38:241-250.
4. Wang J, Zhai H, Rexida R, Shen Y,Hou J*, Bao X. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression inSaccharomyces cerevisiae. FEMS Yeast Res. 2018 Dec 1;18(8). doi: 10.1093/femsyr/foy098.
5. Tang H, Wang J, Wang S, Shen Y, Petranovic D,Hou J*, Bao X*. Efficient yeast surface-display of novel complex synthetic cellulosomes. Microb Cell Fact. 2018 Aug 7;17(1):122. doi: 10.1186/s12934-018-0971-2
6. Chen X, Yang X, Shen Y,Hou J*, Bao X*. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product. Front Microbiol. 2018 Jan 25;9:47. doi: 10.3389/fmicb.
7. Hou J. Creating an oil yeast from brewing yeast. Synth Syst Biotechnol. 2018 Nov 2;3(4):252-253.
8. Hou J,Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res. 2017 Jun 1;17(4).
9. Tang H, Song M, He Y, Wang J, Wang S, Shen Y,Hou J*, Bao X. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases inSaccharomyces cerevisiae, Biotechnol Biofuels. 2017 Feb 27;10:53.
10. Zhao J, Li C, Zhang Y, Shen Y,Hou J*, Bao X*. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae, Microb Cell Fact. 2017 Jan 31;16(1):17.
11. Zhao J, Bao X, Li C, Shen Y,Hou J*. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae, Appl Microbiol Biotechnol. 2016, 100(10):4561-71.
12. Tang H, Wang S, Wang J, Song M, Xu M, Zhang M, Shen Y,Hou J*, Bao X*. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity inSaccharomyces cerevisiae. Sci Rep. 2016 May 9;6:25654. doi: 10.1038/srep25654.
13. Hou J,Shen Y, Jiao C, Ge R, Zhang X, Bao X. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome inSaccharomyces cerevisiae. J Biosci Bioeng. 2016 Feb;121(2):160-5 doi: 10.1016/j.jbiosc.
14. Tang H, Bao X, Shen Y, Song M, Wang S, Wang C,Hou J*. Engineering protein folding and translocation improves heterologous protein secretion inSaccharomyces cerevisiae, Biotechnol Bioeng. 2015, 112(9):1872-82
15. Hou J, Suo F, Wang C, Li X, Shen Y, Bao X.Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolicSaccharomyces cerevisiae.BMC Biotechnology 2014, 14:13
16. Hou J, Tang H, Liu Z, Österlund T, Nielsen J, Petranovic D. Management of the ER stress by activation of the heat shock response in yeast. FEMS Yeast Res, 2014,14(3): 481–494
17. Hou J, Österlund T, Liu Z, Petranovic D, Nielsen J, Heat Shock Response Improves Heterologous Protein Secretion inSaccharomyces cerevisiae, Appl Microbiol Biotechnol, 2013; 97(8):3559-68
18. Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J. Metabolic Engineering of Recombinant Protein Secretion bySaccharomyces cerevisiae, FEMS Yeast Res, 2012, 12(5):491-510.
19. Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J, Engineering of Vesicle Trafficking Improves the Heterologous Protein Production inSaccharomyces cerevisiae, Metab Eng, 2012, 14(2):120-127